72

Digital Fundamentals

Direct extensions such as the ISA bus are fairly easy to implement and serve well in applications
where 1/0 response time does not unduly restrict microprocessor throughput. As computers have
gotten faster, the throughput of microprocessors has rapidly outstripped the response times of all but
the fastest I/O devices. In comparison to a modern microprocessor, a hard-disk controller is rather
slow, with response times measured in microseconds rather than nanoseconds. Additionally, as bus
signals become faster, the permissible length of interconnecting wires decreases, limiting their ex-
pandability. These and other characteristics motivate the decoupling of the microprocessor’s local
bus from the computer’s I/O bus.

An /0 bus can be decoupled from the microprocessor bus by inserting an intermediate bus con-
troller between them that serves as an interface, or translator, between the two buses. Once the buses
are separated, activity on one bus does not necessarily obstruct activity on the other. If the micropro-
cessor wants to write a block of data to a slow device, it can rapidly transfer that data to the bus con-
troller and then continue with other operations at full speed while the controller slowly transfers the
data to the I/0 device. This mechanism is called a posted-write, because the bus controller allows the
microprocessor to complete, or post, its write before the write actually completes. Separate buses
also open up the possibility of multiple microprocessors or logic elements performing 1/O operations
without conflicting with the central microprocessor. In a multimaster system, a specialized DMA
controller can transfer data between two peripherals such as disk controllers while the microproces-
sor goes about its normal business.

The Peripheral Component Interconnect (PCI) bus is the industry-standard follow-on to the ISA
bus, and it implements such advanced features as posted-writes, multiple-masters, and multiple bus
segments. Each PCI bus segment is separated from the others via a PCI bridge chip. Only traffic that
must travel between buses crosses a bridge, thereby reducing congestion on individual PCI bus seg-
ments. One segment can be involved in a data transfer between two devices without affecting a si-
multaneous transfer between two other devices on a different segment. These performance-
enhancing features do not come for free, however. Their cost is manifested by the need for dedicated
PCI control logic in bridge chips and in the I/O devices themselves. It is generally simpler to imple-
ment an [/O device that is directly mapped into the microprocessor’s memory space, but the overall
performance of the computer may suffer under demanding applications.

3.9 ASSEMBLY LANGUAGE AND ADDRESSING MODES

With the hardware ready, a computer requires software to make it more than an inactive collection of
components. Microprocessors fetch instructions from program memory, each consisting of an op-
code and, optionally, additional operands following the opcode. These opcodes are binary data that
are easy for the microprocessor to decode, but they are not very readable by a person. To enable a
programmer to more easily write software, an instruction representation called assembly language
was developed. Assembly language is a low-level language that directly represents each binary op-
code with a human-readable text mnemonic. For example, the mnemonic for an unconditional
branch-to-subroutine instruction could be BSR. In contrast, a high-level language such as C++ or
Java contains more complex logical expressions that may be automatically converted by a compiler
to dozens of microprocessor instructions. Assembly language programs are assembled, rather than
compiled, into opcodes by directly translating each mnemonic into its binary equivalent.

Assembly language also makes programming easier by enabling the usage of text labels in place
of hard-coded addresses. A subroutine can be named FOO, and when BSR FOO is encountered by
the assembler, a suitable branch target address will be automatically calculated in place of the label
FOO. Each type of assembler requires a slightly different format and syntax, but there are general as-
sembly language conventions that enable a programmer to quickly adapt to specific implementations

Basic Computer Architecture 73

once the basics are understood. An assembly language program listing usually has three columns of
text followed by an optional comment column as shown in Fig. 3.14. The first column is for labels
that are placeholders for addresses to be resolved by the assembler. Instruction mnemonics are lo-
cated in the second column. The third column is for instruction operands.

This listing uses the Motorola 6800 family’s assembly language format. Though developed in the
1970s, 68xx microprocessors are still used today in embedded applications such as automobiles and
industrial automation. The first line of this listing is not an instruction, but an assembler directive
that tells the assembler to locate the program at memory location $100. When assembled, the listing
is converted into a memory dump that lists a range of memory addresses and their corresponding
contents—opcodes and operands. Assembler directives are often indicated with a period prefix.

The program in Fig. 3.14 is very simple: it counts to 30 ($1E) and then sends the “Z” character
out the serial port. It continues in an infinite loop by returning to the start of the program when the
serial port routine has completed its task. The subroutine to handle the serial port is not shown and is
referenced with the SEND_CHAR label. The program begins by clearing accumulator A (the 6800
has two accumulators: ACCA and ACCB). It then enters an incrementing loop where the accumula-
tor is incremented and then compared against the terminal count value, $1E. The # prefix tells the as-
sembler to use the literal value $1E for the comparison. Other alternatives are possible and will soon
be discussed. If ACCA is unequal to $1E, the microprocessor goes back to increment ACCA. If
equal, the accumulator is loaded with the ASCII character to be transmitted, also a literal operand.
The assumption here is that the SEND_CHAR subroutine transmits whatever is in ACCA. When the
subroutine finishes, the program starts over with the branch-always instruction.

Each of the instructions in the preceding program contains at least one operand. CLRA and INCA
have only one operand: ACCA. CMPA and LDAA each have two operands: ACCA and associated
data. Complex microprocessors may reference three or more operands in a single instruction. Some
instructions can reference different types of operands according to the requirements of the program
being implemented. Both CMPA and LDAA reference literal operands in this example, but a pro-
grammer cannot always specify a predetermined literal data value directly in the instruction sequence.

Operands can be referenced in a variety of manners, called addressing modes, depending on the
type of instruction and the type of operand. Some types of instructions inherently use only one ad-
dressing mode, and some types have multiple modes. The manners of referencing operands can be
categorized into six basic addressing modes: implied, immediate, direct, relative, indirect, and in-
dexed. To fully understand how a microprocessor works, and to efficiently utilize an instruction set,
it is necessary to explore the various mechanisms used to reference data.

* Implied addressing specifies the operand of an instruction as an inherent property of that instruc-
tion. For example, CLRA implies the accumulator by definition. No additional addressing infor-
mation following the opcode is needed.

.ORIG $100

BEGIN CLRA

INC_LOOP INCA
CMPA #S1E ; compare ACCA = S$S1E
BNE INC_LOOP ; if not equal, go back
LDAA #'7Z" ; else, load ASCII 'Z'
BSR SEND_CHAR ; send ACCA to serial port
BRA BEGIN ; start over again

FIGURE 3.14 Typical assembly language listing.

